Whittaker–Kotelnikov–Shannon Sampling Theorem and Aliasing Error

FANG GENSUN*

Department of Mathematics, Beijing Normal University, Beijing, 100875, People's Republic of China

Communicated by Rolf J. Nessel

Received February 9, 1994; accepted in revised form July 10, 1995

Let $B_{\sigma,p}$, $1 \leq p \leq \infty$, be the set of all functions from $L_p(\mathbb{R})$ which can be continued to entire functions of exponential type $\leq \sigma$. The well known Whittaker– Kotelnikov–Shannon sampling theorem states that every $f \in B_{\sigma,2}$ can be represented as

$$f(x) = \sum_{k \, \in \, \mathbb{Z}} f\left(\frac{k\pi}{\sigma}\right) \frac{\sin \, \sigma(x - k\pi/\sigma)}{\sigma(x - k\pi/\sigma)}, \qquad \sigma > 0,$$

in norm $L_2(\mathbb{R})$. We prove that it is also true for all $f \in B_{\sigma,p}$, $1 , in norm <math>L_p(\mathbb{R})$. From this, we further prove that if $f(x) = O(\Psi(x))$, where $\Psi(x) \in L_p(\mathbb{R})$, $\Psi(x) \ge 0$ is even and non-increasing on $[0, \infty)$, and f(x) is Riemann integrable on every finite interval, then the aliasing error of f, i.e., $f(x) - \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \sin \sigma(x - k\pi/\sigma) [\sigma(x - k\pi/\sigma)]^{-1}$, converges to zero in $L_p(\mathbb{R})$, $1 , when <math>\sigma \to +\infty$. If $f \in L_p^r(\mathbb{R})$, $r \in \mathbb{N}$, we also determine the error bound of its aliasing error. \mathbb{C} 1996 Academic Press, Inc.

1. INTRODUCTION

Let *E* be a finite interval or the real axis \mathbb{R} and denote by $L_p(E)$, $1 \leq p \leq \infty$, the classical Lebesgue space with the usual norm. We say a function *f* is bandlimited if its Fourier transform has finite support. The well known Whittaker–Kotelnikov–Shannon sampling theorem which plays an important role in communication, information theory, control theory, and data processing [1, 2] states that every signal function which is bandlimited to $[-\sigma, \sigma]$ can be completely reconstructed from its sampled values $f(k\pi/\sigma)$. We formulate it as

^{*} Supported by the Natural Science Foundation of China.

THEOREM A [2]. Let $f \in L_2(\mathbb{R}) \cap C(\mathbb{R})$ and the support of the Fourier transform \hat{f} of f be contained in $[-\sigma, \sigma]$. Then

(a) $f(x) = \sum f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma)$, for all $x \in \mathbb{R}$,

(b) $\lim_{m\to\infty} ||f(x) - \sum_{|k| \leq m} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma)||_{2(\mathbb{R})} = 0$, where sinc $x = x^{-1} \sin x$ for $x \neq 0$, and 1 for x = 0. $\sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma)$ is usually named as a Whittaker cardinal series.

During the past hundred years or so many attempts have been made to generalize Theorem A in a purely mathematical as well as in a practical engineering sense. For example, concerning functions which are not a priori bandlimited, one approximates by bandlimited functions and considers estimates for the error. The papers of Butzer, Higgins, and Splettstösser [1–4] have given an extensive list of references with respect to this direction. In particular, Brown [5] has proved that

THEOREM B [5]. Let $f \in C(\mathbb{R}) \cap L_p(\mathbb{R})$, $1 \leq p \leq 2$, $\hat{f} \in L(\mathbb{R})$. Then

(a)
$$\left|\sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma) - f(x)\right| \leq \sqrt{2/\pi} \int_{|t| \geq \sigma} |\hat{f}(t)| dt$$

(b) $\lim_{\sigma \to \infty} \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma) = f(x)$

uniformly on \mathbb{R} , where $\hat{f}(x)$ is the Fourier transform of f(x).

Remark 1. In the language of electrical engineers, the difference $f(x) - \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma)$ is called the aliasing error.

DEFINITION 1. Let g(z) be an entire function, $\sigma > 0$; if for every $\varepsilon > 0$, there is a constant $A = A(\varepsilon)$ such that

$$|g(z)| \leq A \exp(\sigma + \varepsilon) |z|, \quad \forall z \in \mathbb{C},$$
(1.1)

then g(z) is said to be an entire function of exponential type σ . Denote by E_{σ} the class of all entire functions of exponential type σ , and let B_{σ} be the subset of all functions of E_{σ} which are bounded on \mathbb{R} ; finally, let

$$B_{\sigma,p} = B_{\sigma} \cap L_p(\mathbb{R}), \quad 1 \leq p \leq \infty, \qquad B_{\sigma,\infty} := B_{\sigma}, \quad \sigma > 0.$$
(1.2)

According to Schwartz's theorem [6, p. 110]

$$B_{\sigma,p} = \{ f \in L_p(\mathbb{R}) : \operatorname{supp} \hat{f} \subset [-\sigma, \sigma] \},$$
(1.3)

the $\hat{f}(x)$ in (1.3) means the Fourier transform of f(x) in the sense of generalized functions [6, p. 30]. For the case p=2, it is the classical Paley–Wiener theorem, therefore, in view of the Schwartz theorem, if a function $f \in L_p(\mathbb{R})$ is bandlimited in $[-\sigma, \sigma]$, then $f \in B_{\sigma, p}$. Rahman and Vértesi [7] have considered the convergence of Lagrange interpolation of some non-periodic function by entire functions of exponential type $\sigma > 0$ in

the points $k\pi/\sigma$, $k \in \mathbb{Z}$. In order to relate their results, we need the following definitions:

DEFINITION 2 [7]. Given $1 \leq p < \infty$, we denote by $\mathscr{F}_p(\delta)$ the set of all measurable functions $f: \mathbb{R} \to \mathbb{C}$ with

$$f(x) = O((1+|x|)^{-1/p-\delta}), \qquad x \in \mathbb{R} \ (|x| \to \infty)$$
(1.4)

for some $\delta > 0$, and by \mathscr{F}_p the union $\bigcup_{\delta > 0} \mathscr{F}_p(\delta)$. Clearly $\mathscr{F}_p \subset L_p(\mathbb{R})$.

DEFINITION 3 [7]. We denote by \Re the set of all functions $f: \mathbb{R} \to \mathbb{C}$ which are Riemann integrable on every finite interval.

Rahman and Vértesi [7] have proved

THEOREM C [7]. Let $f \in \mathscr{F}_p \cap \mathfrak{R}$, 1 . Then

$$\left\| f(x) - \sum_{k \in \mathbb{Z}} f\left(\frac{k\pi}{\sigma}\right) \operatorname{sinc} \sigma(x - k\pi/\sigma) \right\|_{p(\mathbb{R})} \to 0, \qquad 1$$

Remark 2. (1) The notation T_n denotes the class of all trigonometric polynomials of degree $\leq n$. Let $f: \mathbb{R} \to \mathbb{C}$ be a continuous, 2π -periodic function, and denote by $t_n(f, \cdot)$ the trigonometric interpolatory polynomial of degree not exceeding n with $t_n(f; x_{n,k}) = f(x_{n,k})$ in the points $x_{n,k} = 2k\pi/(2n+1), k = 0, \pm 1, ..., \pm n$. It was shown by Marcinkiewicz [8] that

$$\lim_{m \to \infty} \int_0^{2\pi} |f(x) - t_n(f, x)|^p \, dt = 0, \qquad p > 0.$$
(1.5)

It is known that $B_n = T_n$ [9, pp. 175–180], hence Marcinkiewicz's result was a motivation for Rahman and Vértesi's paper.

(2) Reference [7] points out that there is a continuous function $f^*: \mathbb{R} \to \mathbb{C}$ which has compact support and

$$\lim_{\sigma \to +\infty} \left\| f^*(x) - \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma) \right\|_{\infty(\mathbb{R})} = +\infty$$

The above results are the motivation for considering the following two problems: First, can be completely reconstruct $f \in B_{\sigma, p}$, $p \in (1, \infty) \setminus 2$, from its sampled values $f(k\pi/\sigma)$ in $L_p(\mathbb{R})$ metric? Second, how large is the aliasing error for differentiable functions which belong to $L_p(\mathbb{R})$? It is the purpose of this paper to consider these two questions. Our main results are the following: THEOREM 1. Let $f \in B_{\sigma, p}$, 1 . Then

(a) $f(x) = \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma), \quad \forall x \in \mathbb{R}, \text{ and the series}$ $\sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma) \text{ converges uniformly on } \mathbb{R}.$

(b)
$$||f(x) - \sum_{|k| \le m} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma)||_{p(\mathbb{R})} \to 0, \ m \to \infty,$$

(c) there is a constant C_p which depends on p only such that

$$\|f\|_{p(\mathbb{R})} \leq C_p \left(\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} \left| f\left(\frac{k\pi}{\sigma}\right) \right|^p \right)^{1/p}.$$

Remark 3. (1) The parts (a), (b) of Theorem 1 are generalizations of the Whittaker–Kotelnikov–Shannon sampling theorem (see Theorem A) in $B_{\sigma,p}$, 1 .

(2) Part (c) of Theorem 1 is a generalization of the Marcinkiewicz inequality on $B_{\sigma,p}$, 1 .

(3) If $1 \le p < 2$, then $B_{\sigma,p} \subset B_{\sigma,2}$ [8, Theorem 8.3.5], therefore, if $1 \le p < 2$, Part (a) of Theorem 1 is contained in Theorem A.

(4) Rahman and Vértesi [7] have proved that if $f \in B_{\sigma, p} \cap \mathscr{F}_{p}(\delta)$, $\delta > 0$, then Part (c) of Theorem A is valid.

Let l_p , $1 \le p \le \infty$, be the Banach space of double infinite bounded sequences with the usual norm

$$\|y\|_{l_p} := \left(\sum_{j \in \mathbb{Z}} |y_j|^p\right)^{1/p}, \qquad 1 \le p < \infty,$$

$$\|y\|_{l_{\infty}} = \sup_{j \in \mathbb{Z}} |y_j|.$$

$$(1.6)$$

THEOREM 2. (a) Let $y = \{y_k\}_{k \in \mathbb{Z}}$, $y \in l_p$, $1 . Then there is a unique <math>g \in B_{\sigma, p}$, interpolating the given data $y = \{y_k\}_{k \in \mathbb{Z}}$ in the points $k\pi/\sigma$, $k \in \mathbb{Z}$, and g(x) is represented by

$$g(x) = \sum_{k \in \mathbb{Z}} g(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma), \quad \text{for all} \quad x \in \mathbb{R},$$
(1.7)

and the series $\sum_{k \in \mathbb{Z}} g(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma)$ converges uniformly on \mathbb{R} .

(b) If there is an entire function $g \in B_{\sigma,p}$, $1 \leq p \leq \infty$, such that $g(k\pi/\sigma) = y_k$, $k \in \mathbb{Z}$, then $y = \{y_k\}_{k \in \mathbb{Z}} \in l_p$.

Let $f: \mathbb{R} \to \mathbb{C}$ be a measurable function such that $\{f(k\pi/\sigma)\}_{k \in \mathbb{Z}} \in l_p$, $1 , then by Theorem 2 there is an interpolation operator <math>L_{\sigma}(f, x) \in B_{\sigma, p}$, such that

$$L_{\sigma}(f, k\pi/\sigma) = f(k\pi/\sigma), \qquad k \in \mathbb{Z}.$$

We write also

$$L_{\sigma}(f) := L_{\sigma}(f, \cdot).$$

THEOREM 3. Let $f \in L_p(\mathbb{R})$, $1 , and <math>\{f(k\pi/\sigma)\}_{k \in \mathbb{Z}} \in l_p$ for all $\sigma > 0$. Then $\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \to 0$ if and only if there is a sequence $\{g_{\sigma}\} \subset B_{\sigma,p}$ such that the following two conditions are both satisfied simultaneously.

(a)
$$\|f - g_{\sigma}\|_{p(\mathbb{R})} \to 0, \ \sigma \to +\infty,$$

(b) $((\pi/\sigma) \sum_{k \in \mathbb{Z}} |f(k\pi/\sigma) - g_{\sigma}(k\pi/\sigma)|^p)^{1/p} \to 0, \ \sigma \to +\infty.$

DEFINITION 4. Let $f: \mathbb{R} \to \mathbb{C}$ be a measurable function. We say $f \in \Omega_p$, $1 \leq p < \infty$, if there is a nonnegative, even, nonincreasing on $[0, \infty)$ function $h \in L_p(\mathbb{R})$, such that

$$|f(x)| = O(h(x)), \quad \forall x \in \mathbb{R}.$$
(1.8)

Remark 4. (1) It is clear that $\Omega_p \subsetneq L_p(\mathbb{R})$ and $\mathscr{F}_p \subsetneq \Omega_p$, for example,

$$f(x) = (2 + |x|)^{-1/p} (\log(2 + |x|))^{-1/p - \beta} \in \Omega_p, \qquad \beta > 0,$$

and $f \notin \mathscr{F}_p(\delta)$ for any $\delta > 0$.

(2) If
$$f \in \Omega_p$$
, then $\{f(k\pi/\sigma)\}_{k \in \mathbb{Z}} \in l_p, 1 \leq p < \infty$, for all $\sigma > 0$.

THEOREM 4. Let $f \in \Omega_p \cap \Re$, 1 . Then

$$\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \to 0, \qquad \sigma \to +\infty.$$

Remark 5. Theorem 4 extends Rahman and Vértesi's result [7].

Denote by $L_p^r(\mathbb{R})$, $1 \le p \le \infty$, the subspace of functions f in $L_p(\mathbb{R})$ for which the (r-1)th derivative of f exists and is locally absolutely continuous on \mathbb{R} , and for which $\|f^{(r)}\|_{p(\mathbb{R})}$ is finite; further, let

$$W_{p}^{r}(\mathbb{R}) := \{ f \in L_{p}^{r}(\mathbb{R}) : \| f^{(r)} \|_{p(\mathbb{R})} \leq 1 \}.$$

Given $1 \leq p \leq \infty$, the function

$$\omega(f, t)_{p(\mathbb{R})} = \sup_{|h| \leq t} \|g(\cdot + h) - g(\cdot)\|_{p(\mathbb{R})}$$

is called the modulus of smoothness of f in $L_p(\mathbb{R})$. If $f \in L_p(\mathbb{R})$ is a differentiable function, we obtain a bound for the aliasing error of the function f as follows: THEOREM 5. Let $f \in L_p^r(\mathbb{R})$, $r \in \mathbb{N}$, $1 , <math>\sigma > 1$. Then there is a constant $C_{r,p}$ which depends on r and p only such that

$$\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \leq C_{r,p} \sigma^{-r} \omega\left(f, \frac{1}{\sigma}\right)_{p(\mathbb{R})}.$$

Remark 6. (1) By virtue of [6, p. 168], if $f \in L_p^r(\mathbb{R})$, $1 \le p \le \infty$, then

$$E_{\sigma}(f)_{p(\mathbb{R})} := \inf_{g \in B_{\sigma,p}} \left\| f - g \right\|_{p(\mathbb{R})} \leq C_{r,p} \sigma^{-r} \omega \left(f^{(r)}, \frac{1}{\sigma} \right)_{p(\mathbb{R})}$$

(2) In view of [10, 11], the order of the σ -average width in the sense of Kolmogorov and linear width of $W_p^r(\mathbb{R})$, $1 , is equal to <math>\sigma^{-r}$; therefore, the interpolating operator $L_{\sigma}(f)$ gives an optimal linear algorithm of these widths.

(3) Ries and Stens [16] and Splettstösser *et al.* [17] (see also [18]) gave the following estimate.

Let f be a locally Riemann integrable function such that $|f(x)| = O(|x|^{-\gamma}), |x| \to \infty$, for some $\gamma > 0$. If f is continuous at x_0 and of bounded variation in a neighborhood of x_0 , or if f satisfies a Dini-Lipschitz condition in a neighborhood of x_0 , i.e.,

$$\lim_{\delta \to 0^+} \omega(f, \delta, C[x_0 - \varepsilon, x_0 + \varepsilon]) \log\left(\frac{1}{\delta}\right) = 0,$$
(1.9)

where ω denotes the usual modulus of continuity, then $L_{\sigma}(f, x_0) \to f(x_0)$. If (1.9) is replaced by $\omega(f, \delta; C(\mathbb{R})) = O(\delta^{\alpha}), \ \delta \to 0^+$, for some $\alpha > 0$, then

$$\|f - L_{\sigma}(f)\|_{C(\mathbb{R})} = O(\sigma^{-\alpha} \log \sigma) \qquad (\sigma \to +\infty)$$

where, as usual, $C(\mathbb{R})$ denotes the set of all real- or complex-valued, uniformly continuous and bounded functions f, defined on \mathbb{R} , endowed with the supremum norm $\|f\|_{C(\mathbb{R})}$.

2. SAMPLING THEOREM

In the following, $C_{r,p}$ and C_r stand for two constants which only depend on r and p or r respectively, and they may vary from one equation to the other. Let K(x) be the unique integer satisfying $K(x) - \frac{1}{2} \le x < K(x) + \frac{1}{2}$, and let

$$Hy(x) = \sum' y_k (x-k)^{-1},$$
 (2.1)

where \sum' denotes that the sum is taken over those $k \in \mathbb{Z}$ for which $k \neq K(x)$. Hy(x) is named the mixed Hilbert transform of the sequence $y = \{y_k\}_{k \in \mathbb{Z}}$.

LEMMA 2.1 [12]. Let 1 . Then <math>Hy(x) is a linear bounded operator from $l_p \rightarrow L_p(\mathbb{R})$, i.e.,

$$\|Hy\|_{p(\mathbb{R})} \leq C_p \|y\|_{l_p}, \quad \text{for all} \quad y \in l_p.$$

$$(2.2)$$

Let $L_{\sigma} y := \sum_{k \in \mathbb{Z}} y_k \operatorname{sinc} \sigma(x - k\pi/\sigma)$, and let

$$\|L_{\sigma}\|_{p(\mathbb{R})} := \sup\{\|L_{\sigma} y(x)\|_{p(\mathbb{R})} : \|y\|_{l_{p}} \le 1\}.$$
(2.3)

 $||L_{\sigma}||_{p(\mathbb{R})}$ is called the Lebesgue constant of the Whittaker operator $L_{\sigma} y(x)$. Following the idea of [12], we have

LEMMA 2.2. Let 1 . Then

$$\|L_{\sigma}\|_{p(\mathbb{R})} \leqslant \left(\frac{\pi}{\sigma}\right)^{1/p} C_{p}.$$

Proof. We first consider the case $\sigma = \pi$. If k(x) is such that $|x - k| \leq \frac{1}{2}$, then

$$\begin{split} \left| \sum_{k \in \mathbb{Z}} y_k \operatorname{sinc} \pi(x-k) \right| &\leq \left| \sum_{k \neq k(x)} y_k \operatorname{sinc} \pi(x-k) \right| + |y_{k(x)} \operatorname{sinc} \pi(x-k)| \\ &\leq \left| \sum_{k \neq k(x)} y_k \frac{1}{x-k} \right| + |y_k(x)|. \end{split}$$

Therefore it follows from Lemma 2.1 that we have

$$\|L_{\pi} y(x)\|_{p(\mathbb{R})} \leq \|Hy(x)\|_{p(\mathbb{R})} + \|y\|_{l_p} \leq C_p \|y\|_{l_p}.$$
(2.4)

By changing scale, we obtain from (2.4) that

$$\|L_{\sigma} y(x)\|_{p(\mathbb{R})} \leqslant \left(\frac{\pi}{\sigma}\right)^{1/p} C_p. \quad \blacksquare$$

LEMMA 2.3 [13, Theorem 6.7.1]. Let $g(z) \in E_{\sigma}$, z = x + iy, $g(x) \in B_{\sigma,p}$, $1 \leq p < \infty$. Then

$$\left(\int_{\mathbb{R}}|g(x+iy)|^p\,dx\right)^{1/p}\leqslant e^{\sigma|y|}\,\|g\|_{p(\mathbb{R})},$$

and if $|x| \to \infty$, then $g(x) \to 0$.

LEMMA 2.4 [13, Theorem 6.7.15]. Let $g \in B_{\sigma, p}$, $1 \leq p < \infty$. Then

$$\left(\frac{\pi}{\sigma}\sum_{k\in\mathbb{Z}}\left|g\left(\frac{k\pi}{\sigma}\right)\right|^{p}\right)^{1/p} \leq C_{p} \left\|g\right\|_{p(\mathbb{R})}, \qquad \sigma > 0.$$

LEMMA 2.5. Let $y = \{y_k\}_{k \in \mathbb{Z}}, y \in l_p, 1 . Then the Whittaker series <math>\sum_{k \in \mathbb{Z}} y_k \operatorname{sinc} \sigma(x - k\pi/\sigma)$ is convergent uniformly on \mathbb{R} . If we make

$$g(x) := \sum y_k \operatorname{sinc} \sigma(x - k\pi/\sigma) = L_\sigma y(x), \qquad (2.5)$$

then $g(x) \in B_{\sigma, p}$ and $g(k\pi/\sigma) = y_k, k \in \mathbb{Z}$, and

$$|g(x)| \leq C_p \left\| \frac{\sin x}{x} \right\|_{q(\mathbb{R})} \|y\|_{l_p}, \qquad \frac{1}{p} + \frac{1}{q} = 1,$$
$$\|g\|_{p(\mathbb{R})} \leq C_p \left(\frac{\pi}{\sigma}\right)^{1/p} \|y\|_{l_p}.$$

Proof. Following the method of [7, Lemma 3], we let $z = x + iy \in \mathbb{C}$ be fixed and let

$$h_{\sigma}(z,\eta) = \operatorname{sinc} \sigma(z-\eta), \qquad \eta \in \mathbb{C}, \quad \eta = \xi + i\xi.$$

It follows from [6, p. 101] that as a function of η , $h_{\sigma}(z, \eta)$ is an entire function of exponential type σ . If 1 , <math>1/p + 1/q = 1, then q > 1 and we have

$$\left(\int_{\mathbb{R}} |h_{\sigma}(z,\eta)|^{q} d\zeta\right)^{1/q} = \left(\int_{\mathbb{R}} |\operatorname{sinc}(x+iy)|^{q} dx\right)^{1/q}$$
$$\leqslant \left(\frac{\pi}{\sigma}\right)^{1/q} e^{\sigma |y|} \left\|\frac{\sin x}{x}\right\|_{q(\mathbb{R})},$$
(2.6)

therefore, by virtue of Hölder's inequality, (2.6), Lemma 2.3, and Lemma 2.4, we obtain

$$\left|\sum_{k \in \mathbb{Z}} y_k h_{\sigma}(z, k\pi/\sigma)\right|$$

$$\leq \left(\sum_{k \in \mathbb{Z}} |h_{\sigma}(z, k\pi/\sigma)|^q\right)^{1/q} \|y\|_{l_p}$$

$$\leq C_q \left(\frac{\sigma}{\pi}\right)^{1/q} \|h_{\sigma}(z, k\pi/\sigma)\|_{q(\mathbb{R})} \|y\|_{l_p}$$

$$\leq C_q \left(\frac{\sigma}{\pi}\right)^{1/q} \cdot \left(\frac{\pi}{\sigma}\right)^{1/q} e^{\sigma \|y\|} \left\|\frac{\sin x}{x}\right\|_{q(\mathbb{R})} \|y\|_{l_p}$$

$$\leq C_q e^{\sigma \|y\|} \left\|\frac{\sin x}{x}\right\|_{q(\mathbb{R})} \|y\|_{l_p}.$$
(2.7)

Let $g(z) := \sum_{k \in \mathbb{Z}} y_k h_{\sigma}(z, k\pi/\sigma)$. Equation (2.7) implies that the series $\sum_{k \in \mathbb{Z}} y_k h_{\sigma}(z, k\pi/\sigma)$ converges uniformly on all compact subsets of \mathbb{C} and so its sum g(z) defines an entire function and it follows from (2.7) that $g(z) \in E_{\sigma}$. Moreover, in view of Lemma 2.2, $g(x) \in L_p(\mathbb{R})$; therefore, $g(x) \in B_{\sigma,p}$ and

$$\|g(x)\|_{p} \leq C_{p} \left(\frac{\pi}{\sigma}\right)^{1/p} \|y\|_{l_{p}},$$

and it is clear that $g(k\pi/\sigma) = y_k$, $k \in \mathbb{Z}$. The proof of Lemma 2.5 is complete.

Proof of Theorem 1. Let $f \in B_{\sigma, p}$ and let

$$g(x) := \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma).$$
(2.8)

By Lemma 2.4, the sequence $\{f(k\pi/\sigma)\} \in l_p$, hence in view of Lemma 2.5 the series on the right-hand side of (2.8) converges uniformly on \mathbb{R} and $g \in B_{\sigma,p}$, $g(k\pi/\sigma) = f(k\pi/\sigma)$. Let $\delta(x) = f(x) - g(x)$ and let $\psi(z) = \delta((\pi/\sigma) z)$, $z = x + iy \in \mathbb{C}$. Then it is clear that $\psi(z) \in E_{\pi}$, $\psi(x) \in B_{\pi,p}$, $\psi(k) = 0$, $k \in \mathbb{Z}$; therefore, by a result of Pólya [13, Corollary 9.4.2], $\psi(z) = C_0 \sin \pi z$. In virtue of Lemma 2.3,

$$|\psi(x)| \to 0, \qquad |x| \to \infty,$$

hence $\psi(x) \equiv 0$, f(x) = g(x) which together with (2.8) gives

$$f(x) = \sum_{k \in \mathbb{Z}} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma), \quad \forall x \in \mathbb{R}.$$

Hence Part (a) of Theorem 1 holds. Now we prove Part (b) of Theorem 1. Let $f \in B_{\sigma, p}$, $1 . By Lemma 2.4, <math>\{f(k\pi/\sigma)\}_{k \in \mathbb{Z}} \in l_p$, and it follows from Lemma 2.2 and Part (a) of Theorem 1 that

$$\left\| f - \sum_{|k| \leq m} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma) \right\|_{p(\mathbb{R})}$$

= $\left\| \sum_{|k| > m} f(k\pi/\sigma) \operatorname{sinc} \sigma(x - k\pi/\sigma) \right\|_{p(\mathbb{R})}$
 $\leq C_p \left(\frac{\pi}{\sigma}\right)^{1/p} \left(\sum_{|k| > m} \left| f\left(\frac{k\pi}{\sigma}\right) \right|^p \right)^{1/p} \to 0, \qquad m \to \infty,$

which completes the proof of Part (b) of Theorem 1. From Part (a) and Lemma 2.4, we obtain Part (c) of Theorem 1. Thus Theorem 1 is proved. \blacksquare

Proof of Theorem 2. Let $y = \{y_k\}_{k \in \mathbb{Z}} \in l_p$. In view of Lemma 2.5, there is a function $g(x) \in B_{\sigma,p}$ such that $g(k\pi/\sigma) = y_k$, $k \in \mathbb{Z}$. If there is a function $f \in B_{\sigma,p}$ such that $f(k\pi/\sigma) = y_k$, then in the same way as that for Theorem 1, we have $f(x) \equiv g(x)$, hence the first part of Theorem 2 is proved. On the other hand, if there is a $g \in B_{\sigma,p}$ such that $g(k\pi/\sigma) = y_k$, then from Lemma 2.4,

$$\|y\|_{l_p} = \left(\sum_{k \in \mathbb{Z}} \left|g\left(\frac{k\pi}{\sigma}\right)\right|^p\right)^{1/p} \leq C_p\left(\frac{\sigma}{\pi}\right)^{1/p} \|g\|_{p(\mathbb{R})} < +\infty.$$

Theorem 2 is proved.

3. The Estimates for the Aliasing Error

LEMMA 3.1. Let $f \in L_p(\mathbb{R})$, $\{f(k\pi/\sigma)\}_{k \in \mathbb{Z}} \in l_p$, $1 . Then for every <math>g \in B_{\sigma, p}$, we have

$$\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \leq C_{p} \left(\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} \left| f\left(\frac{k\pi}{\sigma}\right) - g\left(\frac{k\pi}{\sigma}\right) \right|^{p} \right)^{1/p} + \|f - g\|_{p(\mathbb{R})}.$$

Proof. Let $g \in B_{\sigma, p}$. Using Theorem 1, $L_{\sigma}(g, x) \equiv g(x)$, so by Lemma 2.2 we have

$$\begin{split} \|f - L_{\sigma}(f)\|_{p(\mathbb{R})} &\leqslant \|L_{\sigma}(f) - L_{\sigma}(g)\|_{p(\mathbb{R})} + \|f - g\|_{p(\mathbb{R})} \\ &= \|L_{\sigma}(f - g)\|_{p(\mathbb{R})} + \|f - g\|_{p(\mathbb{R})} \\ &\leqslant C_{p} \left(\sum_{k \in \mathbb{Z}} \frac{\pi}{\sigma} \left| f\left(\frac{k\pi}{\sigma}\right) - g\left(\frac{k\pi}{\sigma}\right) \right|^{p} \right)^{1/p} + \|f - g\|_{p(\mathbb{R})} \end{split}$$

which completes the proof Lemma 3.1.

Proof of Theorem 3. From Lemma 3.1, we have the sufficiency of Theorem 3 immediately. The necessity of condition (a) is clear. Now we prove the necessity of condition (b) of Theorem 3. Assume that $\{g_{\sigma}\} \subset B_{\sigma,p}$ such that $\|f - g_{\sigma}\|_{p(\mathbb{R})} \rightarrow 0$, $\sigma \rightarrow +\infty$. If $\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \rightarrow 0$, then for a given $\varepsilon > 0$, there is a $\sigma_0 > 0$ such that, for all $\sigma \ge \sigma_0$,

$$\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \leqslant \frac{\varepsilon}{2}, \qquad \|f - g_{\sigma}\|_{p(\mathbb{R})} \leqslant \frac{\varepsilon}{2},$$

which together with Lemma 2.4 and Part (a) of Theorem 1 gives that if $\sigma \ge \sigma_0$, then

$$\begin{pmatrix} \frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} \left| f\left(\frac{k\pi}{\sigma}\right) - g\left(\frac{k\pi}{\sigma}\right) \right|^p \end{pmatrix}^{1/p} \\ \leqslant \left\| L_{\sigma}(f-g) \right\|_{p(\mathbb{R})} \leqslant \left\| L_{\sigma}(f) - f \right\|_{p(\mathbb{R})} + \left\| f - g \right\|_{p(\mathbb{R})} \leqslant \varepsilon.$$

Let

$$K_r(t) = A_r \left(\frac{2r\sin(t/2r)}{t}\right)^{2r}, \qquad r \in \mathbb{N}, \quad A_r \in \mathbb{R}, \tag{3.1}$$

where the constant A_r is taken such that $\int_{\mathbb{R}} K_r(t) dt = 1$. It follows from [6, pp. 101–102] that $K_r(t) \in B_{1,1}$. Make

$$K_{r,\sigma}(t) = A_r \sigma \left(\frac{2r\sin(\sigma t/2r)}{\sigma t}\right)^{2r},$$
(3.2)

then $K_{r,\sigma}(t) \in B_{\sigma,1}$ and

$$\int_{\mathbb{R}} K_{r,\sigma}(t) dt = 1.$$
(3.3)

LEMMA 3.2. Let $h(t) \in L_p(\mathbb{R})$, $1 , be a non-negative even function which is non-increasing on <math>[0, \infty)$. Let

$$g(x) = \int_{\mathbb{R}} h(x+t) K_{2,\sigma}(t) dt, \qquad \sigma > 1.$$

Then there is a non-negative even function $\psi(x)$ which is non-increasing on $[0, \infty)$ such that

$$|g(x)| \leqslant C_{p,h}\psi(x), \qquad \forall x \in \mathbb{R},$$

where the constant $C_{p,h}$ depends on p and h(x) only.

Proof. It is easy to prove that g(x) is a non-negative and even function on \mathbb{R} . By [6, Theorem 3.6.2], $g \in B_{\sigma, p}$. Let x > 1 and

$$g(x) = \left\{ \int_{-\infty}^{-2x} + \int_{-2x}^{-x/2} + \int_{-x/2}^{\infty} \right\} h(x+t) K_{2,\sigma}(t) dt$$

$$:= I_1(x) + I_2(x) + I_3(x).$$

If $t \in (-\infty, -2x)$, then t < x + t < t/2 < 0, and since h(x) is non-negative and non-decreasing on $[-\infty, 0)$,

$$I_1(x) \leqslant \int_{-\infty}^{-2x} h\left(\frac{t}{2}\right) K_{2,\sigma}(t) dt \leqslant h(x) \int_{-\infty}^{-2x} K_{2,\sigma}(t) dt \leqslant h(x).$$

Let 1/p + 1/q = 1. By Hölder's inequality and (3.2), if $\sigma > 1$, x > 1, we have

$$\begin{split} I_{2}(x) &\leq \left(\int_{-2x}^{-x/2} |h(x+t)|^{p} dt\right)^{1/p} \left(\int_{-2x}^{-x/2} |K_{2,\sigma}(t)|^{q} dt\right)^{1/q} \\ &\leq A_{2} \|h\|_{p(\mathbb{R})} \left(\int_{x/2}^{2x} \sigma^{q} \left|\frac{2\sin\sigma t/2}{\sigma t}\right|^{4q} dt\right)^{1/q} \\ &\leq 2A_{2} \|h\|_{p(\mathbb{R})} \sigma^{1-1/q} \left(\int_{(1/4)\sigma x}^{\infty} \left(\frac{\sin t}{t}\right)^{4q} dt\right)^{1/q} \\ &\leq 2A_{2} \|h\|_{p(\mathbb{R})} \sigma^{1-1/q} \left(\int_{(1/4)\sigma x}^{\infty} \left(\frac{1}{t}\right)^{4q} dt\right)^{1/q} \\ &\leq 512A_{2} \|h\|_{p(\mathbb{R})} \sigma^{-1} x^{-4+1/q} \\ &\leq 512A_{2} \|h\|_{p(\mathbb{R})} x^{-4+1/q}. \end{split}$$

If $t \ge -\frac{1}{2}x$, then $t + x \ge x/2 > 0$. Since h(x) is non-negative and non-increasing on $[0, \infty)$, $h(x + t) \le h(x/2)$, and

$$I_{3}(x) \leq \int_{-x/2}^{\infty} h(x/2) K_{2,\sigma}(t) dt$$
$$\leq h(x/2) \int_{\mathbb{R}} K_{2,\sigma}(t) dt = h\left(\frac{x}{2}\right)$$

Let $C_{p,h} := \max\{512A_2 \|h\|_{p(\mathbb{R})}, 2\}$, and x > 1. Then

$$0 \leq g(x) \leq h(x) + h\left(\frac{x}{2}\right) + 512A_2 \|h\|_{p(\mathbb{R})} x^{-4+1/q}$$
$$\leq C_{p,h}\left(h\left(\frac{x}{2}\right) + x^{-4+1/q}\right).$$

On the other hand, from Hölder's inequality, we have

$$|g(x)| \leq \int_{\mathbb{R}} K_{1,\sigma}(t) dt \cdot ||h||_{p(\mathbb{R})} = ||h||_{p(\mathbb{R})}.$$

Let

$$\psi(x) = \begin{cases} \|h\|_{p(\mathbb{R})}, & \text{if } |x| \le 1, \\ h\left(\frac{x}{2}\right) + |x|^{-4 + 1/q}, & \text{if } |x| > 1. \end{cases}$$

Then $\psi(x) \in L_p(\mathbb{R})$ and $\psi(x)$ is a non-negative even function which is non-increasing on $[0, \infty)$, and

$$|g(x)| \leq C_{p,h}\psi(x), \qquad \forall x \in \mathbb{R}.$$

Let $\Delta_h^k f(t) = \sum_{j=0}^k C_k^j f(t+jh)$ be the *k*th difference, as a measure of the smoothness of the functions. We use the modulus of continuity with respect to the *k*th order difference, namely

$$\omega_k(f,t)_{p(\mathbb{R})} := \sup_{|h| \leqslant t} \|\mathcal{A}_h^k f(x)\|_{p(\mathbb{R})}.$$
(3.4)

LEMMA 3.3 [15, Chap. 5, 1.31]. Let $f \in L_p(\mathbb{R})$, $1 \leq p < \infty$, $k \in \mathbb{N}$, $\sigma \ge 1$. Then there is an entire function $g_{\sigma} \in B_{\sigma, p}$ such that

$$\|f - g_{\sigma}\|_{p(\mathbb{R})} \leq C_k \omega_k \left(f, \frac{1}{\sigma}\right)_{p(\mathbb{R})}$$

Moreover, if $f \in L_p^1(\mathbb{R})$, then

$$\|f' - g'_{\sigma}\|_{p(\mathbb{R})} \leq C_k \omega_k \left(f', \frac{1}{\sigma}\right)_{p(\mathbb{R})}$$

Proof of Theorem 4. Let $f \in \Omega_p$, $1 . By the condition of the theorem, there is a non-negative function <math>h(x) \in L_p(\mathbb{R})$ which is non-increasing on $[0, \infty)$ such that $|f(x)| \leq C_0 h(x)$, $C_0 \in \mathbb{R}$. Let

$$g_{\sigma}(x) = \int_{\mathbb{R}} f(x+t) K_{2,\sigma}(t) dt,$$

where $K_{2,\sigma}(t)$ is defined by (3.3). Then $g_{\sigma} \in B_{\sigma,p}$, and

$$|g_{\sigma}(x)| \leq C_0 \int_{\mathbb{R}} h(x+t) K_{2,\sigma}(t) dt.$$
(3.5)

If $\sigma > 1$, then by Lemma 3.2 there is a non-negative even function $\psi(x) \in L_p(\mathbb{R})$ which is non-increasing on $[0, \infty)$ such that $|g_{\sigma}(x)| \leq C_{p,h}\psi(x)$. By Lemma 3.1, we obtain

$$\|f - L_{\sigma}(f)\|_{p(\mathbb{R})} \leq C_{p} \left(\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} \left| f\left(\frac{k\pi}{\sigma}\right) - g_{\sigma}\left(\frac{k\pi}{\sigma}\right) \right|^{p} \right)^{1/p} + \|f - g_{\sigma}\|_{p(\mathbb{R})}.$$
(3.6)

For given $\varepsilon > 0$, since $h(x) \in L_p(\mathbb{R})$, $\psi(x) \in L_p(\mathbb{R})$, $1 , there is a <math>M_0 > 0$, such that for all $M \ge M_0$,

$$C_0 C_{p,h} \left(\int_{|x| \ge M_0} |h(x)|^p dx \right)^{1/p} \le \frac{\varepsilon}{4},$$

$$C_0 C_{p,h} \left(\int_{|x| \ge M_0} |\psi(x)|^p dx \right)^{1/p} \le \frac{\varepsilon}{4}.$$

Let $\alpha(\sigma) = [\sigma M_0/\pi] + 1$ (here and hereafter [a] denotes the integral part of $a \in \mathbb{R}$). Since h(x) and $\psi(x)$ are even functions which are non-increasing on $[0, \infty)$, from the relation between series and integration, for all $\sigma > 0$, we have

$$C_{p,h}\left(\frac{\pi}{\sigma}\sum_{|k| \ge \alpha(\sigma)} \left| f\left(\frac{k\pi}{\sigma}\right) \right|^{p} \right)^{1/p}$$

$$\leqslant C_{0}C_{p,h}\left(\frac{\pi}{\sigma}\sum_{|k| \ge \alpha(\sigma)} \left| h\left(\frac{k\pi}{\sigma}\right) \right|^{p} \right)^{1/p}$$

$$\leqslant C_{0}C_{p,h}\left(\int_{|x| \ge M_{0}} |h(x)|^{p} dx\right)^{1/p} \leqslant \frac{\varepsilon}{4}.$$
 (3.7)

By the same reason, we have

$$C_{p,h}\left(\frac{\pi}{\sigma}\sum_{|k| \ge \alpha(\sigma)} \left| g_{\sigma}\left(\frac{k\pi}{\sigma}\right) \right|^{p}\right)^{1/p} \le C_{0}C_{p,h}\left(\int_{|x| \ge M_{0}} |\psi(x)|^{p} dx\right)^{1/p} \le \frac{\varepsilon}{4}.$$
 (3.8)

On the other hand, since $f \in \Re$, f is Riemann integrable on $[-M_0, M_0]$, and it is clear that g_{σ} is Riemann integrable on $[-M_0, M_0]$. Therefore, there is a $\sigma_0 > 0$ such that for all $\sigma \ge \sigma_0$,

$$\left(\frac{\pi}{\sigma}\sum_{|k| \leq \beta(\sigma)} |f(k\pi/\sigma) - g_{\sigma}(k\pi/\sigma)|^{p}\right)^{1/p} \leq \|f - g_{\sigma}\|_{p[-M_{0}, M_{0}]} + \frac{\varepsilon}{6}$$
$$\leq \|f - g_{\sigma}\|_{p(\mathbb{R})} + \frac{\varepsilon}{6}, \tag{3.9}$$

where $\beta(\sigma) := \alpha(\sigma) - 1$. From (3.3) and (3.5), we obtain

$$f(x) - g_{\sigma}(x) = \int_{\mathbb{R}} \left(f(x) - f(t+x) \right) K_{2,\sigma}(t) dt$$

where $K_2(t)$ is defined by (3.1). Let

$$C^* := \int_{\mathbb{R}} \left(1 + |t| \right) K_{2,\sigma}(t) \, dt.$$

Then $C^* \in \mathbb{R}$, hence there is a $\sigma_1 > 1$ such that for all $\sigma > \sigma_1$ we have

$$\begin{split} \|f - g_{\sigma}\|_{\rho(\mathbb{R})} &\leqslant \omega \left(f, \frac{1}{\sigma}\right)_{\rho(\mathbb{R})} \int_{\mathbb{R}} (1 + |t|/\sigma) K_{2}(t) dt \\ &\leqslant \omega \left(f, \frac{1}{\sigma}\right) \int_{\mathbb{R}} (1 + |t|) K_{2}(t) dt \\ &\leqslant C^{*} \omega \left(f, \frac{1}{\sigma}\right)_{\rho(\mathbb{R})} \leqslant \frac{\varepsilon}{6}, \end{split}$$
(3.10)

therefore if $\sigma \ge \max{\{\sigma_0, \sigma_1\}}$, from (3.6)–(3.10) we have

$$\|f-L_{\sigma}(f)\|_{p(\mathbb{R})}\!\leqslant\!\frac{\varepsilon}{4}\!+\!\frac{\varepsilon}{4}\!+\!\frac{\varepsilon}{6}\!+\!\frac{\varepsilon}{6}\!+\!\frac{\varepsilon}{6}\!+\!\frac{\varepsilon}{6}\!=\!\varepsilon.\quad \blacksquare$$

LEMMA 3.4. Let $f \in L_p^r(\mathbb{R})$, $r \in \mathbb{N}$, $1 \leq p < \infty$. Then

$$\left(\frac{\pi}{\sigma}\sum_{k\in\mathbb{Z}}\left|f\left(\frac{k\pi}{\sigma}\right)\right|^{p}\right)^{1/p} \leqslant \|f\|_{p(\mathbb{R})} + \frac{\pi}{\sigma}\|f'\|_{p(\mathbb{R})} < +\infty.$$

Proof. Let $x_k = k\pi/\sigma$, $k \in \mathbb{Z}$. By the mean value theorem, there is a $\zeta_k \in [x_k, x_{k+1}]$, such that

$$|f(\xi_k)| = \frac{\sigma}{\pi} \int_{x_k}^{x_{k+1}} |f(u)| \, du,$$

therefore,

$$|f(x_k)| \leq |f(\xi_k)| + |f(\xi_k) - f(x_k)|$$

$$\leq \frac{\sigma}{\pi} \int_{x_k}^{x_{k+1}} |f(u)| \, du + \int_{x_k}^{x_{k+1}} |f(u)| \, du.$$
(3.11)

By virtue of Stein's inequality [14], there is a constant C_0 which is independent of f such that

$$\|f'\|_{p(\mathbb{R})} \leq C_0 \|f\|_{p(\mathbb{R})}^{1-1/r} \|f^{(r)}\|_{p(\mathbb{R})}^{1/r} < +\infty.$$
(3.12)

Let 1/p + 1/q = 1. From Hölder's inequality, (3.11), and (3.12), we get

$$\left(\frac{\pi}{\sigma}\sum_{k\in\mathbb{Z}}\left|f\left(\frac{k\pi}{\sigma}\right)\right|^{p}\right)^{1/p} \leq \left(\sum_{k\in\mathbb{Z}}\int_{x_{k}}^{x_{k+1}}|f(u)|^{p} du\right)^{1/p} + \frac{\pi}{\sigma}\left(\sum_{k\in\mathbb{Z}}\int_{x_{k}}^{x_{k+1}}|f'(u)|^{p} du\right)^{1/p} \leq \left\|f\right\|_{p(\mathbb{R})} + \frac{\pi}{\sigma}\left\|f'\right\|_{p(\mathbb{R})} < +\infty.$$

Proof of Theorem 5. Let $f \in L_p^r(\mathbb{R})$, and let $g_{\sigma}(x)$ be defined by (3.5). From Lemma 3.1, Lemma 3.3, and Lemma 3.4, if $\sigma > 1$ we have

$$\begin{split} \|f - g\|_{p(\mathbb{R})} &\leqslant C_p \left(\frac{\pi}{\sigma} \sum_{k \in \mathbb{Z}} \left| f\left(\frac{k\pi}{\sigma}\right) - g_\sigma \left(\frac{k\pi}{\sigma}\right) \right|^p \right)^{1/p} + \|f - g_\sigma\|_{p(\mathbb{R})} \\ &\leqslant C_p \left(\|f - g_\sigma\|_{p(\mathbb{R})} + \frac{\pi}{\sigma} \|f' - g'_\sigma\|_{p(\mathbb{R})} \right) + \|f - g_\sigma\|_{p(\mathbb{R})} \\ &\leqslant C_{r,p} \omega_{r+1} \left(f, \frac{1}{\sigma}\right)_{p(\mathbb{R})} + \frac{\pi}{\sigma} \omega_{r+1} \left(f', \frac{1}{\sigma}\right)_{p(\mathbb{R})} \\ &\leqslant C_{r,p} \sigma^{-r} \left(\omega \left(f^{(r)}, \frac{1}{\sigma}\right)_{p(\mathbb{R})} + \omega_2 \left(f^{(r)}, \frac{1}{\sigma}\right)_{p(\mathbb{R})} \right) \\ &\leqslant C_{r,p} \sigma^{-r} \omega \left(f^{(r)}, \frac{1}{\sigma}\right)_{p(\mathbb{R})}, \end{split}$$

which completes the proof of Theorem 5.

ACKNOWLEDGMENT

I am grateful to the referees for their valuable comments about this paper.

References

- 1. P. L. BUTZER, A survey of the Whittaker–Shannon sampling theorem and some of its extensions, J. Math. Res. Exposition 3 (1983), 185–212.
- 2. J. R. HIGGINS, Five short stories about the cardinal series, *Bull. Amer. Math. Soc.* 12 (1985), 45–89.
- 3. P. L. BUTZER AND W. SPLETTSTÖSSER, A sampling theorem for duration-limited functions with error estimates, *Inform. and Control* 34 (1977), 55–65.
- W. SPLETTSTÖSSER, Error estimates for sampling approximation of non-bandlimited functions, Math. Mech. Appl. Sci. 1 (1979), 127–137.
- J. L. BROWN, JR., On the error in reconstructing a non-bandlimited function by means of the bandpass sampling theory, J. Math. Anal. Appl. 18 (1967), 75–84; erratum 21 (1968), 699.
- S. M. NIKOLSKII, "Approximation of Functions of Several Variables and Imbedding Theorems," Springer-Verlag, Berlin/Heidelberg, New York, 1975.
- Q. I. RAHMAN AND P. VÉRTESI, On the L^p convergence of Lagrange interpolation of entire functions of exponential type, J. Approx. Theory 69 (1992), 302–317.
- 8. J. MARCINKIEWICZ, Sur l'interpolation, I, Studia Math. 6 (1936), 1-17.
- 9. N. I. ACHIESER, "Theory of Approximation," Ungar, New York, 1956.
- G. G. MAGARIL-IL'JAEV, Φ-average widths of function classes on the real axis, Uspekhi Mat. Nauk. 45 (1990), 211–212.
- 11. G. FANG AND Y. LIU, Average widths and optimal interpolation of Sobolev–Wiener classes $W_{pd}^r(\mathbb{R})$ in the metric $L_q(\mathbb{R})$, J. Approx. Theory **73** (1994), 335–352.
- M. J. MARSDEN, F. B. RICHARDS, AND S. D. RIEMENSCHNEIDER, Cardinal spline interpolation operators on l^p date, *Indiana Univ. Math. J.* 24 (1975), 677–689.
- 13. R. P. BOAS, JR., "Entire Functions," Academic Press, New York, 1954.
- 14. E. M. STEIN, Function of exponential type, Ann. of Math. 65 (1957), 582-593.
- A. F. TIMAN, "Theory of Approximation of Functions of a Real Variable," Pergamon, New York, 1963.
- S. RIES AND R. L. STENS, A localization principle for the approximation by sampling series, *in* "Proc. International Conference Theory of Approximation of Functions, Kiev, May 30–June 6, 1983" (N. P. Korneĭchuk *et al.*, Eds.), pp. 507–509, Izdat. Nauka, Moscow, 1987.
- 17. W. SPLETTSTÖSSER, R. L. STENS, AND G. WILMES, On approximation by the interpolation series of G. Valiron, *Funct. Approx. Comment. Math.* **11** (1981), 39–56.
- P. L. BUTZER AND R. L. STENS, Sampling theory for not necessarily band-limited functions: A historical overview, *SIAM Rev.* 34 (1992), 40–53.