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Let B_, p , 1�p��, be the set of all functions from Lp(R) which can be con-
tinued to entire functions of exponential type �_. The well known Whittaker�
Kotelnikov�Shannon sampling theorem states that every f # B_, 2 can be repre-
sented as

f (x)= :

k # Z

f \k?
_ + sin _(x&k?�_)

_(x&k?�_)
, _>0,

in norm L2(R). We prove that it is also true for all f # B_, p , 1<p<�, in norm
Lp(R). From this, we further prove that if f (x)=O(9(x)), where 9(x) # Lp(R),
9(x)�0 is even and non-increasing on [0, �), and f (x) is Riemann integrable
on every finite interval, then the aliasing error of f , i.e., f (x)&�k # Z f (k?�_)
sin _(x&k?�_)[_(x&k?�_)]&1, converges to zero in Lp(R), 1<p<�, when
_ � +�. If f # Lr

p(R), r # N, we also determine the error bound of its aliasing
error. � 1996 Academic Press, Inc.

1. Introduction

Let E be a finite interval or the real axis R and denote by Lp(E),
1�p��, the classical Lebesgue space with the usual norm. We say a
function f is bandlimited if its Fourier transform has finite support. The
well known Whittaker�Kotelnikov�Shannon sampling theorem which
plays an important role in communication, information theory, control
theory, and data processing [1, 2] states that every signal function which
is bandlimited to [&_, _] can be completely reconstructed from its
sampled values f (k?�_). We formulate it as
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Theorem A [2]. Let f # L2(R) & C(R) and the support of the Fourier
transform f� of f be contained in [&_, _]. Then

(a) f (x)=� f (k?�_) sinc _(x&k?�_), for all x # R,

(b) limm � � & f (x)&� |k|�m f (k?�_) sinc _(x&k?�_)&2(R)=0, where
sinc x=x&1 sin x for x{0, and 1 for x=0. �k # Z f (k?�_) sinc _(x&k?�_)
is usually named as a Whittaker cardinal series.

During the past hundred years or so many attempts have been made to
generalize Theorem A in a purely mathematical as well as in a practical
engineering sense. For example, concerning functions which are not a
priori bandlimited, one approximates by bandlimited functions and con-
siders estimates for the error. The papers of Butzer, Higgins, and
Splettsto� sser [1�4] have given an extensive list of references with respect to
this direction. In particular, Brown [5] has proved that

Theorem B [5]. Let f # C(R) & Lp(R), 1�p�2, f� # L(R). Then

(a) |�k # Z f (k?�_) sinc _(x&k?�_)& f (x)|�- 2�? � |t|�_ | f� (t)| dt,
(b) lim_ � � �k # Z f (k?�_) sinc _(x&k?�_)= f (x)

uniformly on R, where f� (x) is the Fourier transform of f (x).

Remark 1. In the language of electrical engineers, the difference
f (x)&�k # Z f (k?�_) sinc _(x&k?�_) is called the aliasing error.

Definition 1. Let g(z) be an entire function, _>0; if for every =>0,
there is a constant A=A(=) such that

| g(z)|�A exp(_+=) |z|, \z # C, (1.1)

then g(z) is said to be an entire function of exponential type _. Denote by
E_ the class of all entire functions of exponential type _, and let B_ be the
subset of all functions of E_ which are bounded on R; finally, let

B_, p=B_ & Lp(R), 1�p��, B_, � :=B_ , _>0. (1.2)

According to Schwartz's theorem [6, p. 110]

B_, p=[ f # Lp(R): supp f� /[&_, _]], (1.3)

the f� (x) in (1.3) means the Fourier transform of f (x) in the sense of
generalized functions [6, p. 30]. For the case p=2, it is the classical
Paley�Wiener theorem, therefore, in view of the Schwartz theorem, if a
function f # Lp(R) is bandlimited in [&_, _], then f # B_, p . Rahman and
Ve� rtesi [7] have considered the convergence of Lagrange interpolation of
some non-periodic function by entire functions of exponential type _>0 in
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the points k?�_, k # Z. In order to relate their results, we need the following
definitions:

Definition 2 [7]. Given 1�p<�, we denote by Fp($) the set of all
measurable functions f : R � C with

f (x)=O((1+|x| )&1�p&$), x # R ( |x| � �) (1.4)

for some $>0, and by Fp the union �$>0 Fp($). Clearly Fp/Lp(R).

Definition 3 [7]. We denote by R the set of all functions f : R � C
which are Riemann integrable on every finite interval.

Rahman and Ve� rtesi [7] have proved

Theorem C [7]. Let f # Fp & R, 1<p<�. Then

" f (x)& :
k # Z

f \k?
_ + sinc _(x&k?�_)"p(R)

� 0, 1<p<�.

Remark 2. (1) The notation Tn denotes the class of all trigonometric
polynomials of degree �n. Let f : R � C be a continuous, 2?-periodic func-
tion, and denote by tn( f , } ) the trigonometric interpolatory polynomial of
degree not exceeding n with tn( f ; xn, k)= f (xn, k) in the points xn, k=
2k?�(2n+1), k=0, \1, ..., \n. It was shown by Marcinkiewicz [8] that

lim
m � � |

2?

0
| f (x)&tn( f , x)| p dt=0, p>0. (1.5)

It is known that Bn=Tn [9, pp. 175�180], hence Marcinkiewicz's result
was a motivation for Rahman and Ve� rtesi's paper.

(2) Reference [7] points out that there is a continuous function
f *: R � C which has compact support and

lim
_ � +� " f *(x)& :

k # Z

f (k?�_) sinc _(x&k?�_)"�(R)

= +�.

The above results are the motivation for considering the following two
problems: First, can be completely reconstruct f # B_, p , p # (1, �)"2, from
its sampled values f (k?�_) in Lp(R) metric? Second, how large is the
aliasing error for differentiable functions which belong to Lp(R)? It is the
purpose of this paper to consider these two questions. Our main results are
the following:
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Theorem 1. Let f # B_, p , 1<p<�. Then

(a) f (x)=�k # Z f (k?�_) sinc _(x&k?�_), \x # R, and the series
�k # Z f (k?�_) sinc _(x&k?�_) converges uniformly on R.

(b) & f (x)&� |k|�m f (k?�_) sinc _(x&k?�_)&p(R) � 0, m � �,

(c) there is a constant Cp which depends on p only such that

& f &p(R)�Cp \?
_

:
k # Z

} f \k?
_ + }

p

+
1�p

.

Remark 3. (1) The parts (a), (b) of Theorem 1 are generalizations of
the Whittaker�Kotelnikov�Shannon sampling theorem (see Theorem A) in
B_, p , 1<p<�.

(2) Part (c) of Theorem 1 is a generalization of the Marcinkiewicz
inequality on B_, p , 1<p<�.

(3) If 1�p<2, then B_, p/B_, 2 [8, Theorem 8.3.5], therefore, if
1�p<2, Part (a) of Theorem 1 is contained in Theorem A.

(4) Rahman and Ve� rtesi [7] have proved that if f # B_, p & Fp($),
$>0, then Part (c) of Theorem A is valid.

Let lp , 1�p��, be the Banach space of double infinite bounded
sequences with the usual norm

&y&lp :=\ :
j # Z

| yj |
p+

1�p

, 1�p<�,
(1.6)

&y&l�=sup
j # Z

| yj |.

Theorem 2. (a) Let y=[ yk]k # Z , y # lp , 1<p<�. Then there is a
unique g # B_, p , interpolating the given data y=[ yk]k # Z in the points k?�_,
k # Z, and g(x) is represented by

g(x)= :
k # Z

g(k?�_) sinc _(x&k?�_), for all x # R, (1.7)

and the series �k # Z g(k?�_) sinc _(x&k?�_) converges uniformly on R.

(b) If there is an entire function g # B_, p , 1�p��, such that
g(k?�_)= yk , k # Z, then y=[ yk]k # Z # lp .

Let f : R � C be a measurable function such that [ f (k?�_)]k # Z # lp ,
1<p<�, then by Theorem 2 there is an interpolation operator
L_( f , x) # B_, p , such that

L_( f , k?�_)= f (k?�_), k # Z.
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We write also

L_( f ) :=L_( f , } ).

Theorem 3. Let f # Lp(R), 1<p<�, and [ f (k?�_)]k # Z # lp for all
_>0. Then & f &L_( f )&p(R) � 0 if and only if there is a sequence
[ g_]/B_, p such that the following two conditions are both satisfied
simultaneously.

(a) & f &g_&p(R) � 0, _ � +�,

(b) ((?�_) �k # Z | f (k?�_)&g_(k?�_)| p)1�p � 0, _ � +�.

Definition 4. Let f : R � C be a measurable function. We say f # 0p ,
1�p<�, if there is a nonnegative, even, nonincreasing on [0, �) func-
tion h # Lp(R), such that

| f (x)|=O(h(x)), \x # R. (1.8)

Remark 4. (1) It is clear that 0p / Lp(R) and Fp / 0p , for example,

f (x)=(2+|x| )&1�p (log(2+|x| ))&1�p&; # 0p , ;>0,

and f � Fp($) for any $>0.

(2) If f # 0p , then [ f (k?�_)]k # Z # lp , 1�p<�, for all _>0.

Theorem 4. Let f # 0p & R, 1<p<�. Then

& f &L_( f )&p(R) � 0, _ � +�.

Remark 5. Theorem 4 extends Rahman and Ve� rtesi's result [7].

Denote by Lr
p(R), 1�p��, the subspace of functions f in Lp(R) for

which the (r&1)th derivative of f exists and is locally absolutely con-
tinuous on R, and for which & f (r)&p(R) is finite; further, let

W r
p(R) :=[ f # Lr

p(R): & f (r)&p(R)�1].

Given 1�p��, the function

|( f , t)p(R)= sup
|h|�t

&g( }+h)&g( } )&p(R)

is called the modulus of smoothness of f in Lp(R). If f # Lp(R) is a differen-
tiable function, we obtain a bound for the aliasing error of the function f
as follows:
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Theorem 5. Let f # Lr
p(R), r # N, 1<p<�, _>1. Then there is a con-

stant Cr, p which depends on r and p only such that

& f &L_( f )&p(R)�Cr, p_&r| \ f ,
1
_+p(R)

.

Remark 6. (1) By virtue of [6, p. 168], if f # Lr
p(R), 1�p��, then

E_( f )p(R) := inf
g # B_, p

& f &g&p(R)�Cr, p_&r| \ f (r),
1
_+ p(R)

.

(2) In view of [10, 11], the order of the _-average width in the sense
of Kolmogorov and linear width of W r

p(R), 1<p<�, is equal to _&r;
therefore, the interpolating operator L_( f ) gives an optimal linear algo-
rithm of these widths.

(3) Ries and Stens [16] and Splettsto� sser et al. [17] (see also [18])
gave the following estimate.

Let f be a locally Riemann integrable function such that | f (x)|=
O( |x|&#), |x| � �, for some #>0. If f is continuous at x0 and of bounded
variation in a neighborhood of x0 , or if f satisfies a Dini�Lipschitz condi-
tion in a neighborhood of x0 , i.e.,

lim
$ � 0+

|( f , $, C[x0&=, x0+=]) log \1
$+=0, (1.9)

where | denotes the usual modulus of continuity, then L_( f , x0) � f (x0).
If (1.9) is replaced by |( f , $; C(R))=O($:), $ � 0+, for some :>0, then

& f &L_( f )&C(R)=O(_&: log _) (_ � +�)

where, as usual, C(R) denotes the set of all real- or complex-valued,
uniformly continuous and bounded functions f , defined on R, endowed
with the supremum norm & f &C(R) .

2. Sampling Theorem

In the following, Cr, p and Cr stand for two constants which only depend
on r and p or r respectively, and they may vary from one equation to the
other.
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Let K(x) be the unique integer satisfying K(x)& 1
2�x<K(x)+ 1

2 , and let

Hy(x)=:$ yk(x&k)&1, (2.1)

where �$ denotes that the sum is taken over those k # Z for which
k{K(x). Hy(x) is named the mixed Hilbert transform of the sequence
y=[ yk]k # Z .

Lemma 2.1 [12]. Let 1<p<�. Then Hy(x) is a linear bounded
operator from lp � Lp(R), i.e.,

&Hy&p(R)�Cp &y&lp , for all y # lp . (2.2)

Let L_ y :=�k # Z yk sinc _(x&k?�_), and let

&L_&p(R) :=sup[&L_ y(x)&p(R) : &y&lp�1]. (2.3)

&L_&p(R) is called the Lebesgue constant of the Whittaker operator
L_ y(x). Following the idea of [12], we have

Lemma 2.2. Let 1<p<�. Then

&L_&p(R)�\?
_+

1�p

Cp .

Proof. We first consider the case _=?. If k(x) is such that |x&k|� 1
2 ,

then

} :
k # Z

yk sinc ?(x&k) }� } :
k{k(x)

yk sinc ?(x&k) }+| yk(x) sinc ?(x&k)|

� } :
k{k(x)

yk
1

x&k }+| yk(x)|.

Therefore it follows from Lemma 2.1 that we have

&L? y(x)&p(R)�&Hy(x)&p(R)+&y&lp�Cp &y&lp . (2.4)

By changing scale, we obtain from (2.4) that

&L_ y(x)&p(R)�\?
_+

1�p

Cp . K
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Lemma 2.3 [13, Theorem 6.7.1]. Let g(z) # E_ , z=x+iy, g(x) # B_, p ,
1�p<�. Then

\|R

| g(x+iy)| p dx+
1�p

�e_ |y| &g&p(R) ,

and if |x| � �, then g(x) � 0.

Lemma 2.4 [13, Theorem 6.7.15]. Let g # B_, p , 1�p<�. Then

\?
_

:
k # Z

} g \k?
_ + }

p

+
1�p

�Cp &g&p(R) , _>0.

Lemma 2.5. Let y=[ yk]k # Z , y # lp , 1<p<�. Then the Whittaker
series �k # Z yk sinc _(x&k?�_) is convergent uniformly on R. If we make

g(x) :=: yk sinc _(x&k?�_)=L_ y(x), (2.5)

then g(x) # B_, p and g(k?�_)= yk , k # Z, and

| g(x)|�Cp "sin x
x "q(R)

&y&lp ,
1
p

+
1
q

=1,

&g&p(R)�Cp \?
_+

1�p

&y& lp .

Proof. Following the method of [7, Lemma 3], we let z=x+iy # C be
fixed and let

h_(z, ')=sinc _(z&'), ' # C, '=!+i`.

It follows from [6, p. 101] that as a function of ', h_(z, ') is an entire func-
tion of exponential type _. If 1<p<�, 1�p+1�q=1, then q>1 and we
have

\|R

|h_(z, ')|q d`+
1�q

=\|R

|sinc(x+iy)|q dx+
1�q

�\?
_+

1�q

e_ | y| "sin x
x "q(R)

, (2.6)
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therefore, by virtue of Ho� lder's inequality, (2.6), Lemma 2.3, and Lemma
2.4, we obtain

} :
k # Z

ykh_(z, k?�_) }
�\ :

k # Z

|h_(z, k?�_)| q+
1�q

&y&lp

�Cq \_
?+

1�q

&h_(z, k?�_)&q(R) &y&lp

�Cq \_
?+

1�q

} \?
_+

1�q

e_ | y| " sin x
x "q(R)

&y&lp

�Cqe_ | y| "sin x
x "q(R)

&y&lp . (2.7)

Let g(z) :=�k # Z ykh_(z, k?�_). Equation (2.7) implies that the series
�k # Z ykh_(z, k?�_) converges uniformly on all compact subsets of C
and so its sum g(z) defines an entire function and it follows from (2.7)
that g(z) # E_ . Moreover, in view of Lemma 2.2, g(x) # Lp(R); therefore,
g(x) # B_, p and

&g(x)&p�Cp \?
_+

1�p

&y& lp ,

and it is clear that g(k?�_)= yk , k # Z. The proof of Lemma 2.5 is
complete. K

Proof of Theorem 1. Let f # B_, p and let

g(x) := :
k # Z

f (k?�_) sinc _(x&k?�_). (2.8)

By Lemma 2.4, the sequence [ f (k?�_)] # lp , hence in view of Lemma 2.5
the series on the right-hand side of (2.8) converges uniformly on R
and g # B_, p , g(k?�_)= f (k?�_). Let $(x)= f (x)&g(x) and let �(z)=
$((?�_) z), z=x+iy # C. Then it is clear that �(z) # E? , �(x) # B?, p ,
�(k)=0, k # Z; therefore, by a result of Po� lya [13, Corollary 9.4.2],
�(z)=C0 sin ?z. In virtue of Lemma 2.3,

|�(x)| � 0, |x| � �,
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hence �(x)#0, f (x)=g(x) which together with (2.8) gives

f (x)= :
k # Z

f (k?�_) sinc _(x&k?�_), \x # R.

Hence Part (a) of Theorem 1 holds. Now we prove Part (b) of Theorem 1.
Let f # B_, p , 1<p<�. By Lemma 2.4, [ f (k?�_)]k # Z # lp , and it follows
from Lemma 2.2 and Part (a) of Theorem 1 that

" f & :
|k|�m

f (k?�_) sinc _(x&k?�_)"p(R)

=" :
|k|>m

f (k?�_) sinc _(x&k?�_)"p(R)

�Cp \?
_+

1�p

\ :
|k|>m } f \k?

_ + }
p

+
1�p

� 0, m � �,

which completes the proof of Part (b) of Theorem 1. From Part (a) and
Lemma 2.4, we obtain Part (c) of Theorem 1. Thus Theorem 1 is
proved. K

Proof of Theorem 2. Let y=[ yk]k # Z # lp . In view of Lemma 2.5, there
is a function g(x) # B_, p such that g(k?�_)= yk , k # Z. If there is a function
f # B_, p such that f (k?�_)= yk , then in the same way as that for Theorem
1, we have f (x)#g(x), hence the first part of Theorem 2 is proved. On
the other hand, if there is a g # B_, p such that g(k?�_)= yk , then from
Lemma 2.4,

&y&lp=\ :
k # Z

} g \k?
_ + }

p

+
1�p

�Cp \_
?+

1�p

&g&p(R)<+�.

Theorem 2 is proved. K

3. The Estimates for the Aliasing Error

Lemma 3.1. Let f # Lp(R), [ f (k?�_)]k # Z # lp , 1<p<�. Then for every
g # B_, p , we have

& f &L_( f )&p(R)�Cp \?
_

:
k # Z

} f \k?
_ +&g \k?

_ + }
p

+
1�p

+& f &g&p(R) .
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Proof. Let g # B_, p . Using Theorem 1, L_( g, x)#g(x), so by Lemma 2.2
we have

& f &L_( f )&p(R)�&L_( f )&L_( g)&p(R)+& f &g&p(R)

=&L_( f &g)&p(R)+& f &g&p(R)

�Cp \ :
k # Z

?
_ } f \k?

_ +&g \k?
_ + }

p

+
1�p

+& f &g&p(R)

which completes the proof Lemma 3.1. K

Proof of Theorem 3. From Lemma 3.1, we have the sufficiency of
Theorem 3 immediately. The necessity of condition (a) is clear. Now we
prove the necessity of condition (b) of Theorem 3. Assume that [ g_]/B_, p

such that & f &g_&p(R) � 0, _ � +�. If & f &L_( f )&p(R) � 0, then for a
given =>0, there is a _0>0 such that, for all _�_0 ,

& f &L_( f )&p(R)�
=
2

, & f &g_&p(R)�
=
2

,

which together with Lemma 2.4 and Part (a) of Theorem 1 gives that if
_�_0 , then

\?
_

:
k # Z

} f \k?
_ +&g \k?

_ + }
p

+
1�p

�&L_( f &g)&p(R)�&L_( f )& f &p(R)+& f &g&p(R)�=. K

Let

Kr(t)=Ar \2r sin(t�2r)
t +

2r

, r # N, Ar # R, (3.1)

where the constant Ar is taken such that �R Kr(t) dt=1. It follows from
[6, pp. 101�102] that Kr(t) # B1, 1 . Make

Kr, _(t)=Ar _ \2r sin(_t�2r)
_t +

2r

, (3.2)

then Kr, _(t) # B_, 1 and

|
R

Kr, _(t) dt=1. (3.3)
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Lemma 3.2. Let h(t) # Lp(R), 1<p<�, be a non-negative even function
which is non-increasing on [0, �). Let

g(x)=|
R

h(x+t) K2, _(t) dt, _>1.

Then there is a non-negative even function �(x) which is non-increasing on
[0, �) such that

| g(x)|�Cp, h�(x), \x # R,

where the constant Cp, h depends on p and h(x) only.

Proof. It is easy to prove that g(x) is a non-negative and even function
on R. By [6, Theorem 3.6.2], g # B_, p . Let x>1 and

g(x)={|
&2x

&�
+|

&x�2

&2x
+|

�

&x�2= h(x+t) K2, _(t) dt

:=I1(x)+I2(x)+I3(x).

If t # (&�, &2x), then t<x+t<t�2<0, and since h(x) is non-negative
and non-decreasing on [&�, 0),

I1(x)�|
&2x

&�
h \ t

2+ K2, _(t) dt�h(x) |
&2x

&�
K2, _(t) dt�h(x).

Let 1�p+1�q=1. By Ho� lder's inequality and (3.2), if _>1, x>1, we have

I2(x)�\|
&x�2

&2x
|h(x+t)| p dt+

1�p

\|
&x�2

&2x
|K2, _(t)| q dt+

1�q

�A2 &h&p(R) \|
2x

x�2
_q } 2 sin _t�2

_t }
4q

dt+
1�q

�2A2 &h&p(R)_
1&1�q \|

�

(1�4) _x \
sin t

t +
4q

dt+
1�q

�2A2 &h&p(R)_
1&1�q \|

�

(1�4) _x \
1
t+

4q

dt+
1�q

�512A2 &h&p(R) _
&1x&4+1�q

�512A2 &h&p(R) x
&4+1�q.
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If t�& 1
2x, then t+x�x�2>0. Since h(x) is non-negative and non-

increasing on [0, �), h(x+t)�h(x�2), and

I3(x)�|
�

&x�2
h(x�2) K2, _(t) dt

�h(x�2) |
R

K2, _(t) dt=h \x
2+ .

Let Cp, h :=max[512A2 &h&p(R) , 2], and x>1. Then

0�g(x)�h(x)+h \x
2++512A2 &h&p(R) x

&4+1�q

�Cp, h \h \x
2++x&4+1�q+ .

On the other hand, from Ho� lder's inequality, we have

| g(x)|�|
R

K1, _(t) dt } &h&p(R)=&h&p(R) .

Let

�(x)={
&h&p(R) , if |x|�1,

h \x
2++|x|&4+1�q, if |x|>1.

Then �(x) # Lp(R) and �(x) is a non-negative even function which is non-
increasing on [0, �), and

| g(x)|�Cp, h �(x), \x # R. K

Let 2k
h f (t)=�k

j=0 C j
k f (t+ jh) be the k th difference, as a measure of the

smoothness of the functions. We use the modulus of continuity with respect
to the k th order difference, namely

|k( f , t)p(R) := sup
|h|�t

&2k
h f (x)&p(R) . (3.4)

Lemma 3.3 [15, Chap. 5, 1.31]. Let f # Lp(R), 1�p<�, k # N, _�1.
Then there is an entire function g_ # B_, p such that

& f &g_&p(R)�Ck |k \ f ,
1
_+ p(R)

.
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Moreover, if f # L1
p(R), then

& f $&g$_&p(R)�Ck |k \ f $,
1
_+ p(R)

.

Proof of Theorem 4. Let f # 0p , 1<p<�. By the condition of the
theorem, there is a non-negative function h(x) # Lp(R) which is non-
increasing on [0, �) such that | f (x)|�C0 h(x), C0 # R. Let

g_(x)=|
R

f (x+t) K2, _(t) dt,

where K2, _(t) is defined by (3.3). Then g_ # B_, p , and

| g_(x)|�C0 |
R

h(x+t) K2, _(t) dt. (3.5)

If _>1, then by Lemma 3.2 there is a non-negative even function
�(x) # Lp(R) which is non-increasing on [0, �) such that | g_(x)|�
Cp, h�(x). By Lemma 3.1, we obtain

& f &L_( f )&p(R)�Cp \?
_

:
k # Z

} f \k?
_ +&g_ \k?

_ + }
p

+
1�p

+& f &g_&p(R) . (3.6)

For given =>0, since h(x) # Lp(R), �(x) # Lp(R), 1<p<�, there is a
M0>0, such that for all M�M0 ,

C0Cp, h \||x|�M0

|h(x)| p dx+
1�p

�
=
4

,

C0Cp, h \||x|�M0

|�(x)| p dx+
1�p

�
=
4

.

Let :(_)=[_M0 �?]+1 (here and hereafter [a] denotes the integral
part of a # R). Since h(x) and �(x) are even functions which are non-
increasing on [0, �), from the relation between series and integration, for
all _>0, we have

Cp, h \?
_

:
|k|�:(_)

} f \k?
_ + }

p

+
1�p

�C0Cp, h \?
_

:
|k|�:(_)

} h \k?
_ + }

p

+
1�p

�C0Cp, h \||x|�M0

|h(x)| p dx+
1�p

�
=
4

. (3.7)
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By the same reason, we have

Cp, h \?
_

:
|k|�:(_)

} g_ \k?
_ + }

p

+
1�p

�C0 Cp, h \||x|�M0

|�(x)| p dx+
1�p

�
=
4

. (3.8)

On the other hand, since f # R, f is Riemann integrable on [&M0 , M0],
and it is clear that g_ is Riemann integrable on [&M0 , M0]. Therefore,
there is a _0>0 such that for all _�_0 ,

\?
_

:
|k| �;(_)

| f (k?�_)&g_(k?�_)| p+
1�p

�& f &g_&p[&M0 , M0]+
=
6

�& f &g_&p(R)+
=
6

, (3.9)

where ;(_) :=:(_)&1. From (3.3) and (3.5), we obtain

f (x)&g_(x)=|
R

( f (x)& f (t+x)) K2, _(t) dt,

where K2(t) is defined by (3.1). Let

C* :=|
R

(1+|t| ) K2, _(t) dt.

Then C* # R, hence there is a _1>1 such that for all _>_1 we have

& f &g_ &p(R)�| \ f ,
1
_+p(R)

|
R

(1+|t|�_) K2(t) dt

�| \ f ,
1
_+ |

R

(1+|t| ) K2(t) dt

�C*| \ f ,
1
_+ p(R)

�
=
6

, (3.10)

therefore if _�max[_0 , _1], from (3.6)�(3.10) we have

& f &L_( f )&p(R)�
=
4

+
=
4

+
=
6

+
=
6

+
=
6

==. K

Lemma 3.4. Let f # Lr
p(R), r # N, 1�p<�. Then

\?
_

:
k # Z

} f \k?
_ + }

p

+
1�p

�& f &p(R)+
?
_

& f $&p(R)<+�.
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Proof. Let xk=k?�_, k # Z. By the mean value theorem, there is a
!k # [xk , xk+1], such that

| f (!k)|=
_
? |

xk+1

xk

| f (u)| du,

therefore,

| f (xk)|�| f (!k)|+| f (!k)& f (xk)|

�
_
? |

xk+1

xk

| f (u)| du+|
xk+1

xk

| f (u)| du. (3.11)

By virtue of Stein's inequality [14], there is a constant C0 which is
independent of f such that

& f $&p(R)�C0 & f &1&1�r
p(R) & f (r)&1�r

p(R)<+�. (3.12)

Let 1�p+1�q=1. From Ho� lder's inequality, (3.11), and (3.12), we get

\?
_

:
k # Z

} f \k?
_ + }

p

+
1�p

�\ :
k # Z

|
xk+1

xk

| f (u)| p du+
1�p

+
?
_ \ :

k # Z
|

xk+1

xk

| f $(u)| p du+
1�p

�& f &p(R)+
?
_

& f $&p(R)< +�. K

Proof of Theorem 5. Let f # Lr
p(R), and let g_(x) be defined by (3.5).

From Lemma 3.1, Lemma 3.3, and Lemma 3.4, if _>1 we have

& f &g&p(R)�Cp \?
_

:
k # Z

} f \k?
_ +&g_ \k?

_ + }
p

+
1�p

+& f &g_&p(R)

�Cp \& f &g_ &p(R)+
?
_

& f $&g$_&p(R)++& f &g_&p(R)

�Cr, p|r+1 \ f ,
1
_+p(R)

+
?
_

|r+1 \ f $,
1
_+ p(R)

�Cr, p_&r \| \ f (r),
1
_+ p(R)

+|2 \ f (r),
1
_+ p(R)+

�Cr, p_&r| \ f (r),
1
_+ p(R)

,

which completes the proof of Theorem 5. K
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